Synthesis and Structure of 2-Substituted Thieno[$\left.3^{\prime}, \mathbf{2}^{\prime}: 5,6\right]$ pyrido-[4,3-d]pyrimidin-4(3H)-one Derivatives

by Jian-Chao Liu, Hong-Wu He*, and Ming-Wu Ding

Key Laboratory of Pesticide \& Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
(phone: +86(27)67865406; e-mail: journal@mail.ccnu.edu.cn)

Abstract

A series of new 2-substituted 3-(4-chlorophenyl)-5,8,9-trimethylthieno[3', $\left.2^{\prime}: 5,6\right]$ pyrido[4,3-d]pyr-imidin- $4(3 H)$-ones $\mathbf{8}$ were synthesized via an aza-Wittig reaction. Phosphoranylideneamino derivatives $\mathbf{6 a}$ or $\mathbf{6 b}$ reacted with 4-chlorophenyl isocyanate to give carbodiimide derivatives $\mathbf{7 a}$ or $\mathbf{7 b}$, respectively, which were further treated with amines or phenols to give compounds $\mathbf{8}$ in the presence of a catalytic amount of EtONa or $\mathrm{K}_{2} \mathrm{CO}_{3}$. The structure of 2-(4-chlorophenoxy)-3-(4-chlorophenyl)-5,8,9-trimethylthieno $\left[3^{\prime}, 2^{\prime}: 5,6\right]$ pyrido[4,3- d]pyrimidin- $4(3 H)$-one $(\mathbf{8 j})$ was comfirmed by X-ray analysis.

1. Introduction. - The derivatives of pyrido[4,3-d]pyrimidine have recently attracted the interest of pharmaceutical companies. Investigations of this family of compounds are stimulated by the fact that a number of publications have been concerned with the chemistry and the tumour-cell-growing activity of similar derivatives $[1-5]$. The 2 -substituted 5,6,7,8-tetrahydropyrido[4,3- d]pyrimidin- $4(3 H)$ one derivatives 2 were synthesized by Bernath and co-workers [6] from N-substituted 4-oxopiperidin-3-carboxylic acid methyl esters $\mathbf{1}$. Compounds 2 underwent dehydrogenation in xylene or in nitrobenzene in the presence of a Pd / C catalyst, furnishing 2substituted pyrido[4,3- d]pyrimidin- $4(3 H)$-one derivatives 3. However, this method required forcing conditions and long reaction time.

1

2

3

$$
\mathrm{R}^{1}=\mathrm{PhCH}_{2}, \mathrm{Me} ; \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{Me}
$$

Recently, we have been interested in the synthesis of quinazolinones, pyrazolopyrimidinones, and thienopyrimidinones via aza-Wittig reaction of (phosphoranylideneamino)carboxylic acid ethyl esters with aromatic isocyanates and subsequent reaction
with various nucleophiles [7][8], and 2-substituted 3-aryl-8,9,10,11-tetrahydro-5methyl[1]benzothieno[$\left.3^{\prime}, 2^{\prime}: 5,6\right]$ pyrido $[4,3-d]$ pyrimidin- $4(3 H)$-one derivatives were reported [9]. Here we wish to report a facile synthesis of 2 -substituted thieno $\left[3^{\prime}, 2^{\prime}: 5,6\right]$ -pyrido[4,3-d pyrimidin- $4(3 H)$-one derivatives $\mathbf{8}$ from easily accessible (phosphoranylideneamino) carboxylates 6 . The structures of $\mathbf{8}$ were confirmed by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$, EI-MS, IR spectroscopy, elemental analyses, and the single-crystal X-ray-analysis of $\mathbf{8 j}$.
2. Results and Discussions. - The 4-amino-2,3,6-trimethylthieno[2,3-b]pyridine-5carboxylates 5, easily obtained from 2-amino-4,5-dimethylthiophene-3-carbonitril (4) and methyl or ethyl 3-oxobutanoate in the presence of SnCl_{4}, were converted to 4(phosphoranylideneamino) derivatives 6 via reaction with triphenylphosphine, hexachloroethane, and $\mathrm{Et}_{3} \mathrm{~N}$ (Scheme 1).

${ }^{\text {a) }}$ See Table for R^{1} and R^{2}.
Phosphoranylideneamino derivative $\mathbf{6 b}$ reacted with 4-chlorophenyl isocyanate to give carbodiimide derivative $\mathbf{7 b}$, which was allowed to react with amines $\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{NH}$ or phenols $\mathrm{Ar}^{1} \mathrm{OH}$ to produce 2 -substituted 3-(4-chlorophenyl)-5,8,9-trimethylthieno $\left[3^{\prime}, 2^{\prime}: 5,6\right]$ pyrido $[4,3-d]$ pyrimidin- $4(3 H)$-ones 8. Analogously, phosphoranylideneamino derivative 6a reacted with 4-chlorophenyl isocyanate via 7a to the target compounds 8 . The cyclizations of $\mathbf{7}$ with amines to $\mathbf{8 a}-\mathbf{h}$ proceeded smoothly in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and in the presence of catalytic amounts of NaOEt at room temperature and gave satisfactory yields with both primary and secondary alkylamines (Scheme 1 and Table). The cyclizations of $\mathbf{7}$ with phenols in MeCN in the presence of catalytic amounts of $\mathrm{K}_{2} \mathrm{CO}_{3}$ at room temperature did not lead to 2-(aryloxy)-3-(4-chlorophenyl)-5,8,9trimethylthieno $\left[3^{\prime}, 2^{\prime}: 5,6\right]$ pyrido[4,3- d]pyrimidin- $4(3 H)$-ones. However, the reaction took place smoothly to give $\mathbf{8 i}-\mathbf{r}$ in good yields at higher temperature (Scheme 2 and Table), and this with both phenols substituted by electron-withdrawing groups and phenols substituted by electron-releasing groups. The yields of $\mathbf{8}$ from 6a were a bit higher than those from $\mathbf{6 b}$ (see Table). All the products $\mathbf{8}$ were purified by

${ }^{\text {a }}$) For Ar^{1}, see Table.

Table. Formation and Physical Constants of Compounds $\mathbf{8}$

	$\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{NH}$ or $\mathrm{Ar}^{1} \mathrm{OH}$	Crystal color	M.p. [${ }^{\text {] }}$	Reaction time [h]	Reaction temp. [${ }^{\circ}$]	$\begin{aligned} & \text { Yield } \\ & \left.[\%]^{a}\right) \end{aligned}$	$\begin{aligned} & \text { Yield } \\ & \left.[\%]^{b}\right) \end{aligned}$
8 a	$\mathrm{MeCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$	colorless	251-252	10	25	94	90
8b	$\mathrm{Me}_{2} \mathrm{CHNH}_{2}$	colorless	298-299	9	25	89	88
8c	$\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$	colorless	248-249	11	25	90	86
8d	$\mathrm{MeCH}_{2} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}$	colorless	258-259	11	25	89	82
8 e	$\mathrm{Me}_{3} \mathrm{CNH}_{2}$	colorless	> 300	10	25	85	84
8 f	$\left(\mathrm{MeCH}_{2}\right)_{2} \mathrm{NH}$	colorless	220-223	10	20	92	89
8g	$\left(\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{3}\right)_{2} \mathrm{NH}$	colorless	199-201	9	20	87	76
8h	$\left(\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{2}\right)_{2} \mathrm{NH}$	colorless	190-194	11	25	93	80
8 i	4-Me- $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OH}$	yellow	284-286	12	70	91	89
8j	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OH}$	colorless	> 300	12	70	95	91
8k	PhOH	colorless	276-277	13	70	94	86
81	4- $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OH}$	colorless	254-258	13	70	77	70
8m	2,4- $\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OH}$	colorless	280-281	12	80	86	78
8n	$2-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OH}$	colorless	270-273	13	80	80	80
80	$4-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OH}$	colorless	298-299	12	80	67	57
8p	2,4- $\mathrm{F}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OH}$	colorless	264-265	13	80	82	66
8 q	$3-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OH}$	colorless	265-266	12	80	69	50
8 r	$2-\mathrm{Cl}(4-\mathrm{F}) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OH}$	colorless	265-267	12	80	92	79

${ }^{\text {a }}$) Yields of $\mathbf{8}$ from $\mathbf{6 a}{ }^{\text {b }}$) Yields of $\mathbf{8}$ from $\mathbf{6 b}$.
recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and EtOH and their structures elucidated by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$, IR, MS, and elementary analysis.

For example, the IR spectrum of 8a reveals a $\mathrm{C}=\mathrm{O}$ absorption band at $1672 \mathrm{~cm}^{-1}$, and absorptions at 3361 and $3045 \mathrm{~cm}^{-1}$ are due to $\mathrm{N}-\mathrm{H}$ and aromatic $\mathrm{C}-\mathrm{H}$ groups. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $8 \mathbf{8}$ show the signal of the Me group at the pyridine moiety at $\delta 2.96$ as a s and those of the Me groups at the thiophene ring at $\delta 2.48$ and 2.70. The signal of the NH group appears at $\delta 4.42$, and the aromatic H -atoms absorb at $\delta 7.26-7.62(m, 4 \mathrm{H})$. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ shows nineteen signals. The MS of 8 a reveals the molecule ion peak at $m / z 412$ with 100% abundance. The structure of $8 \mathbf{8}$ was also established on the basis of elementalanalysis data.

The structure of $\mathbf{8 j}$ was determined by X-ray crystallography (Fig.).

Figure. X-Ray crystal structure of thieno[3', 2':5,6]pyrido[4,3-d]pyrimidin- $4(3 \mathrm{H})$-one $\mathbf{8 j}$

We gratefully acknowledge financial support of this work by the National Key Project for Basic Research and the National Natural Science Foundation of China (No. 2003CB114400 and Project No. 20372023).

Experimental Part

1. General. All of the solvents and materials were reagent grade and purified as required. Melting points: WRS-1B digital apparatus; uncorrected. IR Spectra: PE-983 IR spectrometer; KBr pellets; in $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra: Varian-Mercury-400 spectrometer; CDCl_{3} solns.; δ in ppm rel. to SiMe_{4}, J in Hz. MS: Finnigan-Trace-MS spectrometer. Elemental analyses: Vario-EL-III instrument.
2. 4-Amino-2,3,6-trimethylthieno[2,3-b]pyridine-5-carboxylic Acid Methyl and Ethyl Ester (5a and $\mathbf{5 b}$, resp.). The 2-amino-4,5-dimethylthiophene-3-carbonitrile ($4 ; 1.52 \mathrm{~g}, 10 \mathrm{mmol}$) and $\mathrm{SnCl}_{4}(2.3 \mathrm{ml}$, $20 \mathrm{mmol})$ were added to a stirred soln. of methyl 3-oxobutanoate $(1.18 \mathrm{~g}, 10 \mathrm{mmol})$ in dry toluene $(20 \mathrm{ml})$. The mixture was stirred at r.t. for 0.5 h and then heated under reflux for 4 h . Then the mixture was added to a sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ soln. $(60 \mathrm{ml} ; \mathrm{pH} 10-11)$, the suspension extracted with $\operatorname{AcOEt}(3 \times$ 50 ml), and the combined extract dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated: $1.21 \mathrm{~g}(48 \%)$ of $\mathbf{5 a}$. Colorless crystals. M.p. $178-179^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 2.40(s, \mathrm{Me}) ; 2.51(s, \mathrm{Me}) ; 2.69(s, \mathrm{Me}-\mathrm{C}(6)) ; 3.91$ $(s, \mathrm{MeO}) ; 6.68\left(s, \mathrm{NH}_{2}\right)$. Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}(250.32)$: C 57.58, H 5.64, N 11.19; found: C 57.70, H 5.33, N 10.91 .

Compound 5b was prepared according to [10][11] in 69% yield. Colorless crystals. M.p. $131-132^{\circ}$.
3. 2,3,6-Trimethyl-4-[(triphenylphosphoranylidene)amino]thieno[2,3-b]pyridine-5-carboxylic Acid Methyl and Ethyl Ester ($\mathbf{6 a}$ and $\mathbf{6 b}$, resp.). To a soln. of $5 \mathbf{5}(1.00 \mathrm{~g}, 4 \mathrm{mmol}$) in $\mathrm{MeCN}(15 \mathrm{ml})$ were added $\mathrm{Ph}_{3} \mathrm{P}(1.30 \mathrm{~g}, 5 \mathrm{mmol})$ and $\mathrm{C}_{2} \mathrm{Cl}_{6}(1.20 \mathrm{~g}, 5 \mathrm{mmol})$. The mixture was treated with $\mathrm{Et}_{3} \mathrm{~N}(5.0 \mathrm{ml})$ and then stirred for $5-10 \mathrm{~h}$ at 0°. After evaporation, the residue was recrystallized from $\mathrm{EtOH}: 1.95 \mathrm{~g}(95 \%)$ of 5a. M.p. 174-175. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 2.12(s, \mathrm{Me}) ; 2.35(s, \mathrm{Me}) ; 2.49(s, \mathrm{Me}-\mathrm{C}(6)) ; 3.36(s$,
$\mathrm{MeO}) ; 7.42-7.62$ ($m, 18$ arom. H). Anal. calc. for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PS}$ (510.60): C 70.57, H 5.33, N 5.49; found: C 70.68, H 5.09, N 5.32.

Compound 6b was prepared according to [10][11] in 93% yield. Colorless crystals. M.p. $174-175^{\circ}$.
4. 4-\{[(4-Chlorophenyl)carbonimidoyl]amino\}thieno[2,3-b]pyridine-5-carboxylic Acid Methyl and Ethyl Ester (7a and 7b, resp.). To a soln. of $\mathbf{6 a}(0.51 \mathrm{~g}, 1 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$, 4-chlorophenyl isocyanate (1.1 mmol) was added under N_{2} at r.t. The mixture was left unstirred for 30 min , then the solvent was evaporated, and $\mathrm{Et}_{2} \mathrm{O} /$ petroleum ether was added to precipitate $\mathrm{Ph}_{3} \mathrm{PO}$. Removal of the solvent gave 7a, which was used directly without further purification.

Following this procedure, $\mathbf{6 b}(0.53 \mathrm{~g}, 1 \mathrm{mmol})$ gave $\mathbf{7 b}$.
5. Compounds $\mathbf{8 a - h}$: General Procedure. To the soln. of $\mathbf{7 a}$ or $\mathbf{7 b}(1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$, the alkylamine (1.1 mmol) was added. The mixture was stirred for 30 min , the solvent was removed, and anh. $\mathrm{EtOH}(10 \mathrm{ml})$ with several drops of EtONa in EtOH were added. The mixture was stirred for $9-11 \mathrm{~h}$ at r.t., the soln. concentrated, and the residue recrystallized from $\mathrm{EtOH}: \mathbf{8 a}-\mathbf{h}$.

3-(4-Chlorophenyl)-5,8,9-trimethyl-2-(propylamino)thieno[3', 2':5,6]pyrido[4,3-d]pyrimidin-4(3H)one (8a): IR: $3361(\mathrm{~N}-\mathrm{H}), 3045($ arom. $\mathrm{C}-\mathrm{H}), 2963,2925,2867(\mathrm{C}-\mathrm{H}), 1672(\mathrm{C}=\mathrm{O}), 1512,1490,1449$, 1403, 1170, 1091, 808. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.90(t, J=7.2, \mathrm{Me}) ; 1.61-1.64\left(m, \mathrm{CH}_{2}\right) ; 2.48(s, \mathrm{Me}) ; 2.70(s, \mathrm{Me}) ; 2.96$ $(s, \mathrm{Me}) ; 3.45-3.47\left(m, \mathrm{CH}_{2}\right) ; 4.42(s, \mathrm{NH}) ; 7.26-7.62\left(m, 4\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 11.2 ; 13.6 ; 14.7 ; 22.5$; $26.4 ; 43.8 ; 113.7 ; 119.5 ; 121.8 ; 125.1 ; 126.3 ; 128.1 ; 130.2 ; 132.8 ; 136.2 ; 151.2 ; 152.7 ; 157.7 ; 162.5$. MS: 413 (31), $412\left(100, M^{+}\right), 370(13), 369(18), 42(28)$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{OS}$ (412.94): C 61.09, H 5.09, N 13.58; found: C 60.77 , H 5.00, N 13.34 .

3-(4-Chlorophenyl)-2-(isopropylamino)-5,8,9-trimethylthieno[3',2':5,6]pyrido[4,3-d]pyrimidin$4(3 \mathrm{H})$-one (8b): IR: $3438(\mathrm{~N}-\mathrm{H}), 3135(\operatorname{arom} . \mathrm{C}-\mathrm{H}), 1674(\mathrm{C}=\mathrm{O}), 1560,1511,1490,1401,1085$. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.21(d, J=6.8, \mathrm{Me}) ; 1.25(d, J=6.8, \mathrm{Me}) ; 2.48(s, \mathrm{Me}) ; 2.69(s, \mathrm{Me}) ; 2.95(s, \mathrm{Me}) ; 4.07(s, \mathrm{Me})$; $4.36-4.39(m, N H) ; 7.26-7.62\left(m, 4\right.$ arom. H). MS: $413(27), 412\left(36, M^{+}\right), 411(100), 373(14), 368(93)$, 352 (28), 260 (56), 258 (58), 189 (24), 80 (16). Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{OS}$ (412.94): C 61.09, H 5.09, N 13.58; found: C 60.78, H 4.93, N 13.42 .

2-(Butylamino)-3-(4-chlorophenyl)-5,8,9-trimethylthieno[3', 2':5,6]pyrido[4,3-d]pyrimidin-4(3H)one (8c): IR: $3446(\mathrm{~N}-\mathrm{H}), 3187(\operatorname{arom} . \mathrm{C}-\mathrm{H}), 2959,2924(\mathrm{C}-\mathrm{H}), 1684(\mathrm{C}=\mathrm{O}), 1552,1509,1490,1450$, 1161, 796. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.9(t, J=7.2, \mathrm{Me}) ; 1.30-1.34\left(m, \mathrm{CH}_{2}\right) ; 1.56-1.59\left(m, \mathrm{CH}_{2}\right) ; 3.47-3.50\left(t, \mathrm{CH}_{2}\right)$; 2.48 (s, Me) ; $2.70(s, \mathrm{Me}) ; 2.96(s, \mathrm{Me}) ; 4.39(s, \mathrm{NH}) ; 7.26-7.61$ ($m, 4$ arom. H). MS: $427(26), 426$ (100, M^{+}), 411 (17), 370 (9), 369 (16). Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{OS}$ (426.96): C 61.89, H 5.43, N 13.12; found: C 61.59, H 5.14, N 13.24.

2-[(sec-Butyl)amino]-3-(4-chlorophenyl)-5,8,9-trimethylthieno[3', 2':5,6]pyrido[4,3-d]pyrimidin$4(3 \mathrm{H})$-one (8d): IR: $3366(\mathrm{~N}-\mathrm{H}), 3035(\operatorname{arom} . \mathrm{C}-\mathrm{H}), 2958,2924(\mathrm{C}-\mathrm{H}), 1667(\mathrm{C}=\mathrm{O}), 1557,1511$, 1491, 1449, 1402, 1091, 805. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.89(d, J=6.8,2 \mathrm{Me}) ; 1.95-1.99(m, \mathrm{CH}) ; 2.49(s, \mathrm{Me}) ; 2.71(s$, $\mathrm{Me}) ; 2.97(s, \mathrm{Me}) ; 3.32\left(t, J=6.8, \mathrm{CH}_{2}\right) ; 4.42(s, \mathrm{NH}) ; 7.26-7.67(m, 4$ arom. H). MS: $427(45), 426(29$, M^{+}), 368 (100), 352 (18), 189 (15), 172 (13). Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{OS}$ (426.96): C 61.89, H 5.43, N 13.12; found: C 61.60, H 5.24, N 12.97.

2-[(tert-Butyl)amino]-3-(4-chlorophenyl)-5,8,9-trimethylthieno[3', 2':5,6]pyrido[4,3-d]pyrimidin$4(3 \mathrm{H})$-one (8e): IR: $3434(\mathrm{~N}-\mathrm{H}), 3135(\operatorname{arom} . \mathrm{C}-\mathrm{H}), 2967$, $2924(\mathrm{C}-\mathrm{H}), 1673(\mathrm{C}=\mathrm{O}), 1526,1509$, 1487, 1440, 1290, 1211, 1088, 809. ${ }^{1} \mathrm{H}$-NMR: $1.44(s, 3 \mathrm{Me}) ; 2.49(s, \mathrm{Me}) ; 2.73(s, \mathrm{Me}) ; 2.96(s, \mathrm{Me}) ; 4.22(s$, NH); 7.26-7.62 ($m, 4$ arom. H). MS: 427 (14), 426 (64, M^{+}), 370 (100), 368 (86), 352 (16), 189 (10). Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{OS}$ (426.96): C 61.89, H 5.43, N 13.12; found: C 62.06, H 5.25, N 13.26.

3-(4-Chlorophenyl)-2-(diethylamino)-5,8,9-trimethylthieno[3', $\left.2^{\prime}: 5,6\right]$ pyrido[4,3-d]pyrimidin- $4(3 \mathrm{H})$ one (8f): IR: 3135 (arom. C-H), 2982, $2929(\mathrm{C}-\mathrm{H}), 1675(\mathrm{C}=\mathrm{O})$, 1557, 1511, 1490, 1254, 1089, 795. ${ }^{1} \mathrm{H}$-NMR: $0.95(t, J=6.8,2 \mathrm{Me}) ; 2.50(s, \mathrm{Me}) ; 2.69(s, \mathrm{Me}) ; 3.00(s, \mathrm{Me}) ; 3.27\left(q, J=6.8, \mathrm{CH}_{2}\right) ; 7.26-7.51$ ($m, 4$ arom. H). MS: 427 (19), $426\left(82, M^{+}\right), 400(22), 397(100), 354$ (24), 286 (22). Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{OS}$ (426.96): C 61.89, H 5.43, N 13.12; found: C 62.19, H 5.39, N 13.09.

3-(4-Chlorophenyl)-2-(dibutylamino)-5,8,9-trimethylthieno[3', 2':5,6]pyrido[4,3-d]pyrimidin-4(3H)one (8g): IR: 3135 (arom. $\mathrm{C}-\mathrm{H}$), 2928, $2866(\mathrm{C}-\mathrm{H}), 1687(\mathrm{C}=\mathrm{O}), 1558,1510,1490,1459,1402,804$. ${ }^{1} \mathrm{H}$-NMR: $0.86(d, J=7.2,2 \mathrm{Me}) ; 1.16-1.19\left(m, 2 \mathrm{CH}_{2}\right) ; 1.30-1.36\left(m, 2 \mathrm{CH}_{2}\right) ; 2.49(s, \mathrm{Me}) ; 2.68(s, \mathrm{Me})$; $2.98(s, \mathrm{Me}) ; 3.15\left(t, J=6.8,2 \mathrm{CH}_{2}\right) ; 7.26-7.49\left(m, 4\right.$ arom. H). MS: $483(34), 482\left(100, M^{+}\right), 456(14), 425$
(87), 384 (15), 383 (62), 354 (40), 272 (26), 188 (19), 110 (11). Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{ClN}_{4} \mathrm{OS}$ (483.07): C 64.64, H 6.47, N 11.60; found: C 64.90, H 6.63, N 11.86.

3-(4-Chlorophenyl)-2-(dipropylamino)-5,8,9-trimethylthieno[3', 2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one (8h): IR: 3125 (arom. C-H), 2962, 2929 (C-H), 1686 (C=O), 1520, 1490, 1485, 1402, 1090, 796. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.78(t, J=7.2,2 \mathrm{Me}) ; 1.33-1.39\left(m, 2 \mathrm{CH}_{2}\right) ; 2.49(s, \mathrm{Me}) ; 2.69(s, \mathrm{Me}) ; 2.97(\mathrm{~s}, \mathrm{Me}) ; 3.10-$ $3.14\left(m,\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right) ; 7.26-7.51\left(m, 4\right.$ arom. H). MS: $455(16), 454\left(79, M^{+}\right), 425(16), 413(23), 411(100)$, 353 (57), 300 (57), 258 (25), 212 (34), 76 (16). Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{ClN}_{4} \mathrm{OS}$ (455.02): C 63.35, H 5.98, N 12.31; found: C 63.08, H 5.73, N 12.07 .
6. Compounds $\mathbf{8 i}-\mathbf{r}$: General Procedure. To the soln. of $7 \mathbf{7 a}$ or $\mathbf{7 b}(1 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{ml})$, the corresponding phenol (1.1 mmol) and a catalytic amount of $\mathrm{K}_{2} \mathrm{CO}_{3}$ were added. The mixture was stirred for $12-13 \mathrm{~h}$ at $70-80^{\circ}$, the soln. concentrated, and the residue recrystallized from $\mathrm{MeCN}: \mathbf{8 i}-\mathbf{r}$.

3-(4-Chlorophenyl)-5,8,9-trimethyl-2-(4-methylphenoxy)thieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one (8i): IR: 3140 (arom. C-H), $2924(\mathrm{C}-\mathrm{H}), 1699(\mathrm{C}=\mathrm{O})$, 1504, 1490, 1405, 1316, 1198, 840. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 2.01(s, \mathrm{Me}) ; 2.38(s, \mathrm{Me}) ; 2.39(s, \mathrm{Me}) ; 3.03(s, \mathrm{Me}) ; 7.00-7.57(m, 8$ arom. H). MS: 464 (30), 463 (33), 462 (100, M^{+}), 356 (32), 354 (93), 308 (41), 188 (64), 172 (21), 154 (12), 106 (28), 76 (85). Anal. calc. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}$ (461.96): C 65.00, H 4.36, N 9.10; found: C 65.25, H 4.16, N 8.96.

2-(4-Chlorophenoxy)-3-(4-chlorophenyl)-5,8,9-trimethylthieno[3', 2':5,6]pyrido[4,3-d]pyrimidin$4(3 \mathrm{H})$-one (8j): IR: 3144 (arom. C-H), 1699 (C=O), 1561, 1511, 1488, 1404, 1317, 1089, 845. ${ }^{1} \mathrm{H}-\mathrm{NMR}$: $2.03(s, \mathrm{Me}) ; 2.40(s, \mathrm{Me}) ; 3.02(\mathrm{~s}, \mathrm{Me}) ; 7.09-7.58\left(\mathrm{~m}, 8\right.$ arom. H). MS: $483(37), 482(52), 481\left(100, M^{+}\right)$, 354 (9), 98 (8), 38 (17). Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ (482.38): C 59.76, H 3.55, N 8.71; found: C 60.01, H 3.66, N 8.52.

3-(4-Chlorophenyl)-5,8,9-trimethyl-2-phenoxythieno[3', $\left.2^{\prime}: 5,6\right]$ pyrido[4,3-d]pyrimidin- $4(3 \mathrm{H})$-one (8k): IR: 3140 (atom. C-H), 2934 (C-H), 1693 (C=O), 1562, 1515, 1491, 1401, 1264, 1091, 806. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.97$ (s, Me); 2.39 (s, Me); 3.06 (s, Me); 7.13-7.58 ($m, 9$ arom. H). MS: 449 (29), 448 (29), 447 $\left(100, M^{+}\right), 356(21), 355(14), 354(78), 76(13), 64(16)$. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}$ (447.94): C 64.35, H 4.05, N 9.38; found: C 64.30, H 3.75, N 9.63.

3-(4-Chlorophenyl)-5,8,9-trimethyl-2-(4-nitrophenoxy)thieno[3', 2':5,6]pyrido[4,3-d]pyrimidin$4(3 \mathrm{H})$-one (8I): IR: 3114 (arom. C-H), $1700(\mathrm{C}=\mathrm{O}), 1560,1512,1490,1399,1261,1091,862 .{ }^{1} \mathrm{H}-\mathrm{NMR}$: $1.99(s, \mathrm{Me}) ; 2.40(s, \mathrm{Me}) ; 3.03(\mathrm{~s}, \mathrm{Me}) ; 7.37-8.35\left(\mathrm{~m}, 8\right.$ arom. H). MS: 493 (19), 492 ($41, M^{+}$), 445 (13), $372(18), 370(42), 369(30), 292(34), 214(23), 76(34), 62(100)$. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{~S}(492.93)$: C 58.48, H 3.48, N 11.37; found: C 58.72, H 3.67, N 11.60.

3-(4-Chlorophenyl)-2-(2,4-dichlorophenoxy)-5,8,9-trimethylthieno[3', $\left.2^{\prime}: 5,6\right]$ pyrido[4,3-d $]$ pyrimidin-4(3H)-one (8m): IR: 3120 (arom. C-H), 2919 (C-H), 1700 (C=O), 1562, 1489, 1402, 1251, 1089, 804. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.96(s, \mathrm{Me}) ; 2.41(s, \mathrm{Me}) ; 3.04(s, \mathrm{Me}) ; 7.17-7.59$ ($m, 7$ arom. H). MS: 519 (47), 518 (27), 517 $\left(100, M^{+}\right), 516(24), 515(98), 160(46), 135(21), 111$ (17), 74 (18). Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ (516.83): C 55.77, H 3.12, N 8.13; found: C 55.71, H 2.98 , N 7.97.

2-(2-Chlorophenoxy)-3-(4-chlorophenyl)-5,8,9-trimethylthieno[3', 2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one (8n): IR: 3137 (arom. C-H), 2935 (C-H), 1689 (C=O), 1561, 1490, 1400, 1264, 1222, 1090, 804. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.89(s, \mathrm{Me}) ; 2.39(s, \mathrm{Me}) ; 3.06(s, \mathrm{Me}) ; 7.22-7.59(m, 7$ arom. H). MS: $483(65), 482(24)$, $481\left(100, M^{+}\right), 354(18), 126(15), 110(32), 98(41)$. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ (482.38): C 59.76, H 3.55, N 8.71; found: C 59.54, H 3.33, N 8.90 .

2-(4-Bromophenoxy)-3-(4-chlorophenyl)-5,8,9-trimethylthieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one (8o): IR: 3136 (arom. C-H), $2925(\mathrm{C}-\mathrm{H}), 1699$ (C=O), 1561, 1486, 1402, 1264, 1205, 1090, 843. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 2.04$ (s, Me) ; $2.42(s, \mathrm{Me}) ; 3.04(s, \mathrm{Me}) ; 7.04-7.58$ ($m, 8$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 13.6 ; 13.7$; $26.3 ; 119.3 ; 122.4 ; 123.9 ; 125.7 ; 126.5 ; 128.0 ; 129.3 ; 129.7 ; 132.3 ; 132.4 ; 134.4 ; 137.7 ; 149.5 ; 150.6 ; 153.9$; 157.6; 162.6. MS: $529(30), 528(24), 527\left(100, M^{+}\right), 526(23), 525(83), 354$ (11). Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{BrClN}_{3} \mathrm{O}_{2} \mathrm{~S}$ (526.83): C 54.72, H 3.25, N 7.98; found: C 54.53, H 3.37, N 8.23.

3-(4-Chlorophenyl)-2-(2,4-difluorophenoxy)-5,8,9-trimethylthieno[3', 2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one (8p): IR: 3124 (arom. C-H), $2924(\mathrm{C}-\mathrm{H}), 1704(\mathrm{C}=\mathrm{O}), 1562,1507,1401,1371,1189,962$, 830. ${ }^{1} \mathrm{H}$-NMR: 2.01 (s, Me); 2.42 (s, Me); 3.06 (s, Me); 6.93-7.59 ($m, 7$ arom. H). MS: 484 (18), 483 (81, M^{+}), 356 (26), 354 (100), 189 (28), 186 (12), 159 (18), 110 (16), 100 (19). Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}$ (483.92): C 59.57, H 3.33, N 8.68; found: C 59.52, H 3.57, N 8.59.

3-(4-Chlorophenyl)-2-(3-fluorophenoxy)-5,8,9-trimethylthieno[3', $\left.2^{\prime}: 5,6\right]$ pyrido[4,3-d]pyrimidin-4(3H)-one (8q): IR: 3125 (arom. C-H), $2933(\mathrm{C}-\mathrm{H}), 1698(\mathrm{C}=\mathrm{O})$, 1562, 1490, 1399, 1264, 1091, 866. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 2.04$ (s, Me); 2.42 (s, Me); 3.07 (s, Me); 6.94-7.57 ($\mathrm{m}, 8$ arom. H). MS: 467 (36), 466 (44), 465 $\left(100, M^{+}\right), 354(74), 189(15), 110(15), 94(17), 82(19)$. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{FClN}_{3} \mathrm{O}_{2} \mathrm{~S}$ (465.93): C 61.87, H 3.68, N 9.02; found: C 62.10, Н 3.61, N 9.20.

2-(2-Chloro-4-fluorophenoxy)-3-(4-chlorophenyl)-5,8,9-trimethylthieno[3',2':5,6]pyrido[4,3-d]pyri-midin-4(3H)-one (8r): IR: 3128 (arom. C-H), 2927 (C-H), 1700 (C=O), 1559, 1490, 1399, 1371, 1267, 1188, 1090, 861. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.96(s, \mathrm{Me}) ; 2.41(s, \mathrm{Me}) ; 3.06(s, \mathrm{Me}) ; 7.07-7.59$ ($m, 7$ arom. H). MS: 502 (13), $501(48), 500(26), 499\left(100, M^{+}\right), 356(29), 354(100), 188(37), 172(12), 116(21)$. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{FCl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ (500.37): C 57.61, H 3.22, N 8.40 ; found: C 57.57, H 3.26, N 8.52.
X-Ray Crystallographic Analysis of Compound $\mathbf{8 j}$. The structure of $\mathbf{8 j}$, which was recrystallized from EtOH , was determined by single-crystal X-ray diffraction analysis. The crystal is of monoclinic space group $P 2(1) / n$, with $a=11.186(2) \AA, b=10.335(2) \AA, c=19.517(3) \AA, \beta=101.377(3)^{\circ}, V=2212.0(6)$ $\AA^{3}, Z=4, D_{\mathrm{c}}=1.448 \mathrm{~g} / \mathrm{cm}^{3}, S=1.097, \mu=0.295 \mathrm{~mm}^{-1}, M_{\mathrm{r}} 482.37$, final $R=0.0498$, and $w R=0.1364$. The Figure shows the molecular structure of $\mathbf{8 j}$. CCDC-264861 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/ data_request.cif from the Camdridge Crystallographic Data Center.

REFERENCES

[1] A. Rosowsky, H. Bader, R. G. Moran, J. H. Freisheim, Heterocycl. Chem. 1989, 26, 509.
[2] E. C. Taylor, P. S. Ray, J. Org. Chem. 1988, 53, 35.
[3] A. Rosowsky, R. A. Forsch, J. H. Freisheim, R. G. Moran, J. Med. Chem. 1989, 32, 517.
[4] G. W. Rewcastle, B. D. Palmer, A. M. Thompson, A. G. Bridges, J. Med. Chem. 1996, 39, 1823.
[5] J. B. Smail, B. D. Palmer, G. W. Rewcastle, J. Med. Chem. 1999, 42, 1803.
[6] I. Huber, F. Fulop, J. Lazar, G. Bernath, G. Toth, J. Chem. Soc., Perkin Trans. 1 1992, 157.
[7] M. W. Ding, S. Z. Xu, J. F. Zhao, J. Org. Chem. 2004, 69, 8366.
[8] M. W. Ding, Y. F. Chen, N. Y. Huang, Eur. J. Org. Chem. 2004, 3872.
[9] J. C. Liu, H. W. He, Q. Y. Ren, M. W. Ding, Helv. Chim. Acta 2006, 89, 1337.
[10] A. C. Veronese, R. Callegari, C. F. Morelli, Tetrahedron 1995, 51, 12277.
[11] H. B. Zhou, Z. P. Cui, J. C. Liu, H. W. He, M. W. Ding, J. Central Normal Univ. (Nat. Sci.) 2005, 39, 343.

