Synthesis and Structure of 2-Substituted Thieno[3',2':5,6]pyrido-[4,3-d]pyrimidin-4(3H)-one Derivatives

by Jian-Chao Liu, Hong-Wu He*, and Ming-Wu Ding

Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China (phone: +86(27)67865406; e-mail: journal@mail.ccnu.edu.cn)

A series of new 2-substituted 3-(4-chlorophenyl)-5,8,9-trimethylthieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-ones 8 were synthesized *via* an aza-*Wittig* reaction. Phosphoranylideneamino derivatives 6a or 6b reacted with 4-chlorophenyl isocyanate to give carbodiimide derivatives 7a or 7b, respectively, which were further treated with amines or phenols to give compounds 8 in the presence of a catalytic amount of EtONa or K_2CO_3 . The structure of 2-(4-chlorophenoxy)-3-(4-chlorophenyl)-5,8,9-trime-thylthieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one (8j) was comfirmed by X-ray analysis.

1. Introduction. – The derivatives of pyrido[4,3-d]pyrimidine have recently attracted the interest of pharmaceutical companies. Investigations of this family of compounds are stimulated by the fact that a number of publications have been concerned with the chemistry and the tumour-cell-growing activity of similar derivatives [1-5]. The 2-substituted 5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-4(3H)-one derivatives **2** were synthesized by *Bernath* and co-workers [6] from *N*-substituted 4-oxopiperidin-3-carboxylic acid methyl esters **1**. Compounds **2** underwent dehydrogenation in xylene or in nitrobenzene in the presence of a Pd/C catalyst, furnishing 2-substituted pyrido[4,3-d]pyrimidin-4(3H)-one derivatives **3**. However, this method required forcing conditions and long reaction time.

 $R^1 = PhCH_2$, Me; $R^2 = Ph$, Me

Recently, we have been interested in the synthesis of quinazolinones, pyrazolopyrimidinones, and thienopyrimidinones *via* aza-*Wittig* reaction of (phosphoranylideneamino)carboxylic acid ethyl esters with aromatic isocyanates and subsequent reaction

^{© 2007} Verlag Helvetica Chimica Acta AG, Zürich

with various nucleophiles [7][8], and 2-substituted 3-aryl-8,9,10,11-tetrahydro-5methyl[1]benzothieno[3',2':5,6]pyrido[4,3-*d*]pyrimidin-4(3*H*)-one derivatives were reported [9]. Here we wish to report a facile synthesis of 2-substituted thieno[3',2':5,6]pyrido[4,3-*d*]pyrimidin-4(3*H*)-one derivatives **8** from easily accessible (phosphoranylideneamino)carboxylates **6**. The structures of **8** were confirmed by ¹H- and ¹³C-NMR, EI-MS, IR spectroscopy, elemental analyses, and the single-crystal X-ray-analysis of **8**j.

2. Results and Discussions. – The 4-amino-2,3,6-trimethylthieno[2,3-*b*]pyridine-5-carboxylates **5**, easily obtained from 2-amino-4,5-dimethylthiophene-3-carbonitril (**4**) and methyl or ethyl 3-oxobutanoate in the presence of $SnCl_4$, were converted to 4-(phosphoranylideneamino) derivatives **6** *via* reaction with triphenylphosphine, hexa-chloroethane, and Et₃N (*Scheme 1*).

^a) See *Table* for R^1 and R^2 .

Phosphoranylideneamino derivative **6b** reacted with 4-chlorophenyl isocyanate to give carbodiimide derivative **7b**, which was allowed to react with amines R^1R^2NH or phenols Ar^1OH to produce 2-substituted 3-(4-chlorophenyl)-5,8,9-trimethylthie-no[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-ones **8**. Analogously, phosphoranylideneamino derivative **6a** reacted with 4-chlorophenyl isocyanate *via* **7a** to the target compounds **8**. The cyclizations of **7** with amines to **8a** – **h** proceeded smoothly in CH₂Cl₂ and in the presence of catalytic amounts of NaOEt at room temperature and gave satisfactory yields with both primary and secondary alkylamines (*Scheme 1* and *Table*). The cyclizations of **7** with phenols in MeCN in the presence of catalytic amounts of K₂CO₃ at room temperature did not lead to 2-(aryloxy)-3-(4-chlorophenyl)-5,8,9-trimethylthieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-ones. However, the reaction took place smoothly to give **8i** – **r** in good yields at higher temperature (*Scheme 2* and *Table*), and this with both phenols substituted by electron-withdrawing groups and phenols substituted by electron-releasing groups. The yields of **8** from **6a** were a bit higher than those from **6b** (see *Table*). All the products **8** were purified by

^a) For Ar¹, see *Table*.

Table.	Formation	and Phys	sical Const	ants of Co	ompounds 8
--------	-----------	----------	-------------	------------	-------------------

	R ¹ R ² NH or Ar ¹ OH	Crystal color	M.p. [°]	Reaction time [h]	Reaction temp. [°]	Yield [%] ^a)	Yield [%] ^b)		
8a	MeCH ₂ CH ₂ NH ₂	colorless	251-252	10	25	94	90		
8b	Me ₂ CHNH ₂	colorless	298-299	9	25	89	88		
8c	$Me(CH_2)_3NH_2$	colorless	248 - 249	11	25	90	86		
8d	MeCH ₂ CH(Me)NH ₂	colorless	258-259	11	25	89	82		
8e	Me ₃ CNH ₂	colorless	> 300	10	25	85	84		
8f	(MeCH ₂) ₂ NH	colorless	220-223	10	20	92	89		
8g	$(Me(CH_2)_3)_2NH$	colorless	199 - 201	9	20	87	76		
8h	$(Me(CH_2)_2)_2NH$	colorless	190 - 194	11	25	93	80		
8i	$4-Me-C_6H_4-OH$	yellow	284 - 286	12	70	91	89		
8j	$4-Cl-C_6H_4-OH$	colorless	> 300	12	70	95	91		
8k	PhOH	colorless	276 - 277	13	70	94	86		
81	$4-NO_2-C_6H_4-OH$	colorless	254 - 258	13	70	77	70		
8m	2,4-Cl ₂ C ₆ H ₃ OH	colorless	280 - 281	12	80	86	78		
8n	$2-Cl-C_6H_4-OH$	colorless	270-273	13	80	80	80		
80	$4-Br-C_6H_4-OH$	colorless	298-299	12	80	67	57		
8p	$2,4-F_2C_6H_3OH$	colorless	264 - 265	13	80	82	66		
8q	$3-F-C_6H_4-OH$	colorless	265 - 266	12	80	69	50		
8r	2-Cl(4-F)C ₆ H ₃ OH	colorless	265 - 267	12	80	92	79		
^a) Yields of 8 from 6a . ^b) Yields of 8 from 6b .									

recrystallization from CH_2Cl_2 and EtOH and their structures elucidated by ¹H- and ¹³C-NMR, IR, MS, and elementary analysis.

For example, the IR spectrum of **8a** reveals a C=O absorption band at 1672 cm⁻¹, and absorptions at 3361 and 3045 cm⁻¹ are due to N-H and aromatic C-H groups. The ¹H-NMR spectra of **8a** show the signal of the Me group at the pyridine moiety at δ 2.96 as a *s* and those of the Me groups at the thiophene ring at δ 2.48 and 2.70. The signal of the NH group appears at δ 4.42, and the aromatic H-atoms absorb at δ 7.26-7.62 (*m*, 4 H). The ¹³C-NMR shows nineteen signals. The MS of **8a** reveals the molecule ion peak at *m*/*z* 412 with 100% abundance. The structure of **8a** was also established on the basis of elemental-analysis data.

The structure of 8j was determined by X-ray crystallography (Fig.).

Figure. X-Ray crystal structure of thieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one 8j

We gratefully acknowledge financial support of this work by the *National Key Project for Basic Research* and the *National Natural Science Foundation of China* (No. 2003CB114400 and Project No. 20372023).

Experimental Part

1. *General.* All of the solvents and materials were reagent grade and purified as required. Melting points: *WRS-1B* digital apparatus; uncorrected. IR Spectra: *PE-983 IR* spectrometer; KBr pellets; in cm⁻¹. ¹H- and ¹³C-NMR Spectra: *Varian-Mercury-400* spectrometer; CDCl₃ solns.; δ in ppm rel. to SiMe₄, *J* in Hz. MS: *Finnigan-Trace-MS* spectrometer. Elemental analyses: *Vario-EL-III* instrument.

2. 4-Amino-2,3,6-trimethylthieno[2,3-b]pyridine-5-carboxylic Acid Methyl and Ethyl Ester (**5a** and **5b**, resp.). The 2-amino-4,5-dimethylthiophene-3-carbonitrile (**4**; 1.52 g, 10 mmol) and SnCl₄ (2.3 ml, 20 mmol) were added to a stirred soln. of methyl 3-oxobutanoate (1.18 g, 10 mmol) in dry toluene (20 ml). The mixture was stirred at r.t. for 0.5 h and then heated under reflux for 4 h. Then the mixture was added to a sat. aq. Na₂CO₃ soln. (60 ml; pH 10–11), the suspension extracted with AcOEt (3×50 ml), and the combined extract dried (Na₂SO₄) and concentrated: 1.21 g (48%) of **5a**. Colorless crystals. M.p. 178–179°. ¹H-NMR (CDCl₃, 400 MHz): 2.40 (*s*, Me); 2.51 (*s*, Me); 2.69 (*s*, Me–C(6)); 3.91 (*s*, MeO); 6.68 (*s*, NH₂). Anal. calc. for C₁₂H₁₄N₂O₂S (250.32): C 57.58, H 5.64, N 11.19; found: C 57.70, H 5.33, N 10.91.

Compound **5b** was prepared according to [10][11] in 69% yield. Colorless crystals. M.p. $131-132^{\circ}$. 3. 2,3,6-Trimethyl-4-[(triphenylphosphoranylidene)amino]thieno[2,3-b]pyridine-5-carboxylic Acid Methyl and Ethyl Ester (**6a** and **6b**, resp.). To a soln. of **5a** (1.00 g, 4 mmol) in MeCN (15 ml) were added Ph₃P (1.30 g, 5 mmol) and C₂Cl₆ (1.20 g, 5 mmol). The mixture was treated with Et₃N (5.0 ml) and then stirred for 5–10 h at 0°. After evaporation, the residue was recrystallized from EtOH: 1.95 g (95%) of **5a**. M.p. 174–175. ¹H-NMR (CDCl₃, 400 MHz): 2.12 (*s*, Me); 2.35 (*s*, Me); 2.49 (*s*, Me–C(6)); 3.36 (*s*, MeO); 7.42–7.62 (*m*, 18 arom. H). Anal. calc. for C₃₀H₂₇N₂O₂PS (510.60): C 70.57, H 5.33, N 5.49; found: C 70.68, H 5.09, N 5.32.

Compound **6b** was prepared according to [10] [11] in 93% yield. Colorless crystals. M.p. $174-175^{\circ}$. 4. 4-{[(4-Chlorophenyl)carbonimidoyl]amino}thieno[2,3-b]pyridine-5-carboxylic Acid Methyl and Ethyl Ester (**7a** and **7b**, resp.). To a soln. of **6a** (0.51 g, 1 mmol) in dry CH₂Cl₂ (10 ml), 4-chlorophenyl isocyanate (1.1 mmol) was added under N₂ at r.t. The mixture was left unstirred for 30 min, then the solvent was evaporated, and Et₂O/petroleum ether was added to precipitate Ph₃PO. Removal of the solvent gave **7a**, which was used directly without further purification.

Following this procedure, **6b** (0.53 g, 1 mmol) gave **7b**.

5. Compounds 8a-h: General Procedure. To the soln. of 7a or 7b (1 mmol) in CH₂Cl₂ (10 ml), the alkylamine (1.1 mmol) was added. The mixture was stirred for 30 min, the solvent was removed, and anh. EtOH (10 ml) with several drops of EtONa in EtOH were added. The mixture was stirred for 9–11 h at r.t., the soln. concentrated, and the residue recrystallized from EtOH: 8a-h.

3-(4-Chlorophenyl)-5,8,9-trimethyl-2-(propylamino)thieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one (**8a**): IR: 3361 (N–H), 3045 (arom. C–H), 2963, 2925, 2867 (C–H), 1672 (C=O), 1512, 1490, 1449, 1403, 1170, 1091, 808. ¹H-NMR: 0.90 (t, J = 7.2, Me); 1.61–1.64 (m, CH₂); 2.48 (s, Me); 2.70 (s, Me); 2.96 (s, Me); 3.45–3.47 (m, CH₂); 4.42 (s, NH); 7.26–7.62 (m, 4 arom. H). ¹³C-NMR: 11.2; 13.6; 14.7; 22.5; 26.4; 43.8; 113.7; 119.5; 121.8; 125.1; 126.3; 128.1; 130.2; 132.8; 136.2; 151.2; 152.7; 157.7; 162.5. MS: 413 (31), 412 (100, M^+), 370 (13), 369 (18), 42 (28). Anal. calc. for C₂₁H₂₁ClN₄OS (412.94): C 61.09, H 5.09, N 13.58; found: C 60.77, H 5.00, N 13.34.

3-(4-Chlorophenyl)-2-(isopropylamino)-5,8,9-trimethylthieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one (**8b**): IR: 3438 (N–H), 3135 (arom. C–H), 1674 (C=O), 1560, 1511, 1490, 1401, 1085. ¹H-NMR: 1.21 (d, J = 6.8, Me); 1.25 (d, J = 6.8, Me); 2.48 (s, Me); 2.69 (s, Me); 2.95 (s, Me); 4.07 (s, Me); 4.36–4.39 (m, NH); 7.26–7.62 (m, 4 arom. H). MS: 413 (27), 412 (36, M^+), 411 (100), 373 (14), 368 (93), 352 (28), 260 (56), 258 (58), 189 (24), 80 (16). Anal. calc. for C₂₁H₂₁ClN₄OS (412.94): C 61.09, H 5.09, N 13.58; found: C 60.78, H 4.93, N 13.42.

2-(Butylamino)-3-(4-chlorophenyl)-5,8,9-trimethylthieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)one (8c): IR: 3446 (N-H), 3187 (arom. C-H), 2959, 2924 (C-H), 1684 (C=O), 1552, 1509, 1490, 1450, 1161, 796. ¹H-NMR: 0.9 (t, J = 7.2, Me); 1.30–1.34 (m, CH₂); 1.56–1.59 (m, CH₂); 3.47–3.50 (t, CH₂); 2.48 (s, Me); 2.70 (s, Me); 2.96 (s, Me); 4.39 (s, NH); 7.26–7.61 (m, 4 arom. H). MS: 427 (26), 426 (100, M^+), 411 (17), 370 (9), 369 (16). Anal. calc. for C₂₂H₂₃ClN₄OS (426.96): C 61.89, H 5.43, N 13.12; found: C 61.59, H 5.14, N 13.24.

 $\begin{array}{l} 2\mbox{-}[(sec-Butyl)amino]\mbox{-}3\mbox{-}(4\mbox{-}chlorophenyl)\mbox{-}5\mbox{,}8\mbox{-}trimethylthieno[\mbox{3'}\mbox{,}2\mbox{'}:5\mbox{,}6\mbox{]}pyrim(d[\mbox{-}4\mbox{,}3\mbox{-}d]pyrim(d[\mbox$

 $\label{eq:2-f} \begin{array}{l} (\text{tert-}Butyl)amino]-3-(4-chlorophenyl)-5,8,9-trimethylthieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3\text{H})-one~(\textbf{8e}): IR: 3434~(\text{N}-\text{H}),~3135~(\text{arom. C}-\text{H}),~2967,~2924~(\text{C}-\text{H}),~1673~(\text{C}=\text{O}),~1526,~1509,~1487,~1440,~1290,~1211,~1088,~809.~^{1}\text{H}-\text{NMR}: 1.44~(s,3~\text{Me});~2.49~(s,~\text{Me});~2.73~(s,~\text{Me});~2.96~(s,~\text{Me});~4.22~(s,~\text{NH});~7.26-7.62~(m,~4~\text{arom.~H}).~\text{MS}:~427~(14),~426~(64,~M^+),~370~(100),~368~(86),~352~(16),~189~(10).~\text{Anal. calc. for $C_{22}\text{H}_{23}\text{ClN}_4\text{OS}~(426.96): C~61.89,~\text{H}~5.43,~\text{N}~13.12;~\text{found}: C~62.06,~\text{H}~5.25,~\text{N}~13.26. \end{array}$

3-(4-Chlorophenyl)-2-(diethylamino)-5,8,9-trimethylthieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)one (**8f**): IR: 3135 (arom. C–H), 2982, 2929 (C–H), 1675 (C=O), 1557, 1511, 1490, 1254, 1089, 795. ¹H-NMR: 0.95 (t, J = 6.8, 2 Me); 2.50 (s, Me); 2.69 (s, Me); 3.00 (s, Me); 3.27 (q, J = 6.8, CH₂); 7.26–7.51 (m, 4 arom. H). MS: 427 (19), 426 (82, M^+), 400 (22), 397 (100), 354 (24), 286 (22). Anal. calc. for C₂₂H₂₃ClN₄OS (426.96): C 61.89, H 5.43, N 13.12; found: C 62.19, H 5.39, N 13.09.

3-(4-Chlorophenyl)-2-(dibutylamino)-5,8,9-trimethylthieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)one (**8**g): IR: 3135 (arom. C–H), 2928, 2866 (C–H), 1687 (C=O), 1558, 1510, 1490, 1459, 1402, 804. ¹H-NMR: 0.86 (*d*, *J* = 7.2, 2 Me); 1.16–1.19 (*m*, 2 CH₂); 1.30–1.36 (*m*, 2 CH₂); 2.49 (*s*, Me); 2.68 (*s*, Me); 2.98 (*s*, Me); 3.15 (*t*, *J* = 6.8, 2 CH₂); 7.26–7.49 (*m*, 4 arom. H). MS: 483 (34), 482 (100, *M*⁺), 456 (14), 425 (87), 384 (15), 383 (62), 354 (40), 272 (26), 188 (19), 110 (11). Anal. calc. for $C_{26}H_{31}CIN_4OS$ (483.07): C 64.64, H 6.47, N 11.60; found: C 64.90, H 6.63, N 11.86.

3-(4-Chlorophenyl)-2-(dipropylamino)-5,8,9-trimethylthieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one (**8h**): IR: 3125 (arom. C–H), 2962, 2929 (C–H), 1686 (C=O), 1520, 1490, 1485, 1402, 1090, 796. ¹H-NMR: 0.78 (t, J = 7.2, 2 Me); 1.33–1.39 (m, 2 CH₂); 2.49 (s, Me); 2.69 (s, Me); 2.97 (s, Me); 3.10–3.14 (m, (CH₂)₂N); 7.26–7.51 (m, 4 arom. H). MS: 455 (16), 454 (79, M^+), 425 (16), 413 (23), 411 (100), 353 (57), 300 (57), 258 (25), 212 (34), 76 (16). Anal. calc. for C₂₄H₂₇ClN₄OS (455.02): C 63.35, H 5.98, N 12.31; found: C 63.08, H 5.73, N 12.07.

6. Compounds 8i-r: General Procedure. To the soln. of 7a or 7b (1 mmol) in MeCN (10 ml), the corresponding phenol (1.1 mmol) and a catalytic amount of K₂CO₃ were added. The mixture was stirred for 12–13 h at 70–80°, the soln. concentrated, and the residue recrystallized from MeCN: 8i-r.

3-(4-Chlorophenyl)-5,8,9-trimethyl-2-(4-methylphenoxy)thieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one (**8i**): IR: 3140 (arom. C–H), 2924 (C–H), 1699 (C=O), 1504, 1490, 1405, 1316, 1198, 840. ¹H-NMR : 2.01 (*s*, Me); 2.38 (*s*, Me); 2.39 (*s*, Me); 3.03 (*s*, Me); 7.00–7.57 (*m*, 8 arom. H). MS: 464 (30), 463 (33), 462 (100, M^+), 356 (32), 354 (93), 308 (41), 188 (64), 172 (21), 154 (12), 106 (28), 76 (85). Anal. calc. for C₂₅H₂₀ClN₃O₂S (461.96): C 65.00, H 4.36, N 9.10; found: C 65.25, H 4.16, N 8.96.

 $\begin{array}{l} 2-(4-Chlorophenoxy)-3-(4-chlorophenyl)-5,8,9-trimethylthieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one (8j): IR: 3144 (arom. C-H), 1699 (C=O), 1561, 1511, 1488, 1404, 1317, 1089, 845. ¹H-NMR: 2.03 ($ *s*, Me); 2.40 (*s*, Me); 3.02 (*s*, Me); 7.09-7.58 (*m*, 8 arom. H). MS: 483 (37), 482 (52), 481 (100,*M* $⁺), 354 (9), 98 (8), 38 (17). Anal. calc. for C₂₄H₁₇Cl₂N₃O₂S (482.38): C 59.76, H 3.55, N 8.71; found: C 60.01, H 3.66, N 8.52. \end{array}$

3-(4-Chlorophenyl)-5,8,9-trimethyl-2-phenoxythieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one (**8k**): IR: 3140 (atom. C–H), 2934 (C–H), 1693 (C=O), 1562, 1515, 1491, 1401, 1264, 1091, 806. ¹H-NMR: 1.97 (*s*, Me); 2.39 (*s*, Me); 3.06 (*s*, Me); 7.13–7.58 (*m*, 9 arom. H). MS: 449 (29), 448 (29), 447 (100, M^+), 356 (21), 355 (14), 354 (78), 76 (13), 64 (16). Anal. calc. for C₂₄H₁₈ClN₃O₂S (447.94): C 64.35, H 4.05, N 9.38; found: C 64.30, H 3.75, N 9.63.

 $\begin{array}{l} 3-(4-Chlorophenyl)-5,8,9-trimethyl-2-(4-nitrophenoxy)thieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one (8l): IR: 3114 (arom. C-H), 1700 (C=O), 1560, 1512, 1490, 1399, 1261, 1091, 862. ¹H-NMR: 1.99 (s, Me); 2.40 (s, Me); 3.03 (s, Me); 7.37-8.35 (m, 8 arom. H). MS: 493 (19), 492 (41,$ *M*⁺), 445 (13), 372 (18), 370 (42), 369 (30), 292 (34), 214 (23), 76 (34), 62 (100). Anal. calc. for C₂₄H₁₇ClN₄O₄S (492.93): C 58.48, H 3.48, N 11.37; found: C 58.72, H 3.67, N 11.60.

3-(4-Chlorophenyl)-2-(2,4-dichlorophenoxy)-5,8,9-trimethylthieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one (**8m**): IR: 3120 (агот. С–H), 2919 (С–H), 1700 (С=О), 1562, 1489, 1402, 1251, 1089, 804. ¹H-NMR: 1.96 (*s*, Me); 2.41 (*s*, Me); 3.04 (*s*, Me); 7.17–7.59 (*m*, 7 агот. H). MS: 519 (47), 518 (27), 517 (100, *M*⁺), 516 (24), 515 (98), 160 (46), 135 (21), 111 (17), 74 (18). Anal. calc. for C₂₄H₁₆Cl₃N₃O₂S (516.83): C 55.77, H 3.12, N 8.13; found: C 55.71, H 2.98, N 7.97.

2-(2-Chlorophenoxy)-3-(4-chlorophenyl)-5,8,9-trimethylthieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one (**8n**): IR: 3137 (arom. C–H), 2935 (C–H), 1689 (C=O), 1561, 1490, 1400, 1264, 1222, 1090, 804. ¹H-NMR: 1.89 (*s*, Me); 2.39 (*s*, Me); 3.06 (*s*, Me); 7.22–7.59 (*m*, 7 arom. H). MS: 483 (65), 482 (24), 481 (100, M^+), 354 (18), 126 (15), 110 (32), 98 (41). Anal. calc. for C₂₄H₁₇Cl₂N₃O₂S (482.38): C 59.76, H 3.55, N 8.71; found: C 59.54, H 3.33, N 8.90.

2-(4-Bromophenoxy)-3-(4-chlorophenyl)-5,8,9-trimethylthieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one (**8o**): IR: 3136 (arom. C–H), 2925 (C–H), 1699 (C=O), 1561, 1486, 1402, 1264, 1205, 1090, 843. ¹H-NMR: 2.04 (*s*, Me); 2.42 (*s*, Me); 3.04 (*s*, Me); 7.04–7.58 (*m*, 8 arom. H). ¹³C-NMR: 13.6; 13.7; 26.3; 119.3; 122.4; 123.9; 125.7; 126.5; 128.0; 129.3; 129.7; 132.3; 132.4; 134.4; 137.7; 149.5; 150.6; 153.9; 157.6; 162.6. MS: 529 (30), 528 (24), 527 (100, M^+), 526 (23), 525 (83), 354 (11). Anal. calc. for C₂₄H₁₇BrClN₃O₂S (526.83): C 54.72, H 3.25, N 7.98; found: C 54.53, H 3.37, N 8.23.

3-(4-Chlorophenyl)-2-(2,4-difluorophenoxy)-5,8,9-trimethylthieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one (**8p**): IR: 3124 (arom. C–H), 2924 (C–H), 1704 (C=O), 1562, 1507, 1401, 1371, 1189, 962, 830. ¹H-NMR: 2.01 (*s*, Me); 2.42 (*s*, Me); 3.06 (*s*, Me); 6.93–7.59 (*m*, 7 arom. H). MS: 484 (18), 483 (81, M^+), 356 (26), 354 (100), 189 (28), 186 (12), 159 (18), 110 (16), 100 (19). Anal. calc. for C₂₄H₁₆F₂ClN₃O₂S (483.92): C 59.57, H 3.33, N 8.68; found: C 59.52, H 3.57, N 8.59. 3-(4-Chlorophenyl)-2-(3-fluorophenoxy)-5,8,9-trimethylthieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one (**8q**): IR: 3125 (arom. C–H), 2933 (C–H), 1698 (C=O), 1562, 1490, 1399, 1264, 1091, 866. ¹H-NMR: 2.04 (*s*, Me); 2.42 (*s*, Me); 3.07 (*s*, Me); 6.94–7.57 (*m*, 8 arom. H). MS: 467 (36), 466 (44), 465 (100, M^+), 354 (74), 189 (15), 110 (15), 94 (17), 82 (19). Anal. calc. for C₂₄H₁₇FClN₃O₂S (465.93): C 61.87, H 3.68, N 9.02; found: C 62.10, H 3.61, N 9.20.

2-(2-Chloro-4-fluorophenoxy)-3-(4-chlorophenyl)-5,8,9-trimethylthieno[3',2':5,6]pyrido[4,3-d]pyrimidin-4(3H)-one (**8r**): IR: 3128 (arom. C–H), 2927 (C–H), 1700 (C=O), 1559, 1490, 1399, 1371, 1267, 1188, 1090, 861. ¹H-NMR: 1.96 (*s*, Me); 2.41 (*s*, Me); 3.06 (*s*, Me); 7.07–7.59 (*m*, 7 arom. H). MS: 502 (13), 501 (48), 500 (26), 499 (100, M^+), 356 (29), 354 (100), 188 (37), 172 (12), 116 (21). Anal. calc. for C₂₄H₁₆FCl₂N₃O₂S (500.37): C 57.61, H 3.22, N 8.40; found: C 57.57, H 3.26, N 8.52.

X-Ray Crystallographic Analysis of Compound **8j**. The structure of **8j**, which was recrystallized from EtOH, was determined by single-crystal X-ray diffraction analysis. The crystal is of monoclinic space group P2(1)/n, with a = 11.186(2) Å, b = 10.335(2) Å, c = 19.517(3) Å, $\beta = 101.377(3)^\circ$, V = 2212.0(6) Å³, Z = 4, $D_c = 1.448$ g/cm³, S = 1.097, $\mu = 0.295$ mm⁻¹, M_r 482.37, final R = 0.0498, and wR = 0.1364. The *Figure* shows the molecular structure of **8j**. CCDC-264861 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge *via* www.ccdc.cam.ac.uk/ data_request.cif from the *Camdridge Crystallographic Data Center*.

REFERENCES

- [1] A. Rosowsky, H. Bader, R. G. Moran, J. H. Freisheim, Heterocycl. Chem. 1989, 26, 509.
- [2] E. C. Taylor, P. S. Ray, J. Org. Chem. 1988, 53, 35.
- [3] A. Rosowsky, R. A. Forsch, J. H. Freisheim, R. G. Moran, J. Med. Chem. 1989, 32, 517.
- [4] G. W. Rewcastle, B. D. Palmer, A. M. Thompson, A. G. Bridges, J. Med. Chem. 1996, 39, 1823.
- [5] J. B. Smail, B. D. Palmer, G. W. Rewcastle, J. Med. Chem. 1999, 42, 1803.
- [6] I. Huber, F. Fulop, J. Lazar, G. Bernath, G. Toth, J. Chem. Soc., Perkin Trans. 1 1992, 157.
- [7] M. W. Ding, S. Z. Xu, J. F. Zhao, J. Org. Chem. 2004, 69, 8366.
- [8] M. W. Ding, Y. F. Chen, N. Y. Huang, Eur. J. Org. Chem. 2004, 3872.
- [9] J. C. Liu, H. W. He, Q. Y. Ren, M. W. Ding, Helv. Chim. Acta 2006, 89, 1337.
- [10] A. C. Veronese, R. Callegari, C. F. Morelli, *Tetrahedron* 1995, 51, 12277.
- [11] H. B. Zhou, Z. P. Cui, J. C. Liu, H. W. He, M. W. Ding, J. Central Normal Univ. (Nat. Sci.) 2005, 39, 343.

Received January 4, 2007